Publications


The 2015 Super resolution roadmap

Stefan W. Hell, ..., Ilaria Testa et al.

Journal of Physics D: Applied Physics, 48, 44


CRISPR/Cas9–mediated endogenous protein tagging for RESOLFT super–resolution microscopy of living human cells

Michael Ratz, Ilaria Testa, S.W. Hell and S.Jakobs (2015)

Scientific Reports 5, 9592


Dual Channel RESOLFT Nanoscopy by Using Fluorescent State Kinetics

Ilaria Testa, Elisa D’Este, Nicolai T. Urban, Francisco Balzarotti, Stefan W. Hell (2015)

Nano Letters 15, 103–106

In this paper the concept of RESOLFT super resolution light microscopy was extended to multicolor imaging allowing accurate co-localization studies of multiple proteins simultaneously.


Two–Color RESOLFT Nanoscopy with Green and Red Fluorescent Photochromic Proteins

Flavie Lavoie–Cardinal, Nickels Jensen, Volker Westphal, Andre C. Stiel, Andriy Chmyrov, Jakob Bierwagen, Ilaria Testa, Stefan Jakobs, Stefan W. Hell (2013)

ChemPhysChem doi:10.1002/cphc.201301016


Nanoscopy of living brain slice with low light levels

Ilaria Testa, Nicolai T. Urban, Stefan Jakobs, Christian Eggeling, Katrin I. Willig, Stefan W. Hell (2012)

Neuron 75: 992–1000 doi: 10.1016/j.neuron.2012.07.028

In this paper we showed the potential of RESOLFT super resolution light microscopy for neuroimaging. Neuronal proteins specific for hippocampal dendritic spines were recorded multiple times at high accuracy.


rsEGFP2 enables fast RESOLFT nanoscopy of living cells

Tim Grotjohann*, Ilaria Testa*, Matthias Reuss, Tanja Brakemann, Christian Eggeling, Stefan W Hell, Stefan Jakobs (2012) *equal first author

eLIFE Sciences 1:1–14 doi: 10.7554/eLife.00248

In this paper we pushed the time resolution of RESOLFT super resolution light microscopy. By speeding up the recording time we could follow dynamics of proteins located in various cells compartment.


Diffraction–unlimited all–optical imaging and writing with a photochromic GFP

Tim Grotjohann*, Ilaria Testa*, Marcel Leutenegger*, Hannes Bock, Nicolai T. Urban, Flavie Lavoie Cardinal, Katrin I. Willig, Christian Eggeling, Stefan Jakobs & Stefan W. Hell (2011) *equal first author

Nature 478: 204–208 doi:10.1038/nature10497

In this paper we show, for the first time, the concept of RESOLFT super resolution microscopy to work for biological imaging (30–50nm).


A reversibly photoswitchable GFP–like protein with fluorescence excitation decoupled from switching

Tanja Brakemann, Andre C Stiel, Gert Weber*, Martin Andresen*, Ilaria Testa*, Tim Grotjohann, Marcel Leutenegger, Uwe Plessmann, Henning Urlaub, Christian Eggeling, Markus C Wahl, Stefan W Hell & Stefan Jakobs (2011) *equal first author

Nature Biotechnology 29: 942–950 doi:10.1038/nbt.1952


Nanoscopy of Protein Colocalization in Living Cells by STED and GSDIM

Birka Lalkens, Ilaria Testa, Katrin I. Willig, Stefan W. Hell (2011)

Microscopy Research and Techniques 75:1–6 doi: 10.1002/jemt.21026


Multicolor Fluorescence Nanoscopy in Fixed and Living Cells by Exciting Conventional Fluorophores, with a Single Wavelength

Ilaria Testa, Christian A. Wurm, Rebecca Medda, Ellen Rothermel, Claas Von Middendorff, Jonas Fölling, Stefan Jakobs, Andreas Schönle, Stefan W. Hell, Christian Eggeling (2010)

Biophysical Journal 99: 2686 – 2694 doi: 10.1016/j.bpj.2010.08.012

In this paper we have shown 3-4 color multiplexed single molecule super resolution imaging.


Understanding biological dynamics: following cells and molecules to track functions and mechanisms

Andrea Palamidessi, Ilaria Testa, Emanuela Frittoli, Sara Barozzi, Massimiliano Garre, Davide Mazza, Pier Paolo Di Fiore, Alberto Diaspro, Giorgio Scita, Mario Faretta (2010)

European Biophysical Journal 39:947-957 doi: 10.1007/s00249-009-0461-x


Far-Field Autofluorescence Nanoscopy

Jakob Bierwagen*, Ilaria Testa*, Jonas Fölling, Dirk Wenzel, Stefan Jakobs, Christian Eggeling, Stefan W. Hell (2010) *equal first author

Nano Letters 10:4249–4252 doi: 10.1021/nl1027638


The Role of the C-Terminus for Functional Heteromerization of the Plant Channel KDC1

Alessia Naso, Ingo Dreyer, Laura Pedemonte, Ilaria Testa, Judith Lucia Gomez-Porras, Cesare Usai, Bernd Mueller-Rueber, Alberto Diaspro, Franco Gambale, Cristiana Picco (2009)

Biophysical Journal 96: 4063-4074 doi: 10.1016/j.bpj.2009.02.0556


Nanoscale separation of molecular species based on their rotational mobility

Ilaria Testa, Andreas Schönle, Claas von Middendorff, Claudia Geisler, Rebecca Medda, Christian A Wurm, Andre C Stiel, Stefan Jakobs, Mariano Bossi, Christian Eggeling, StefanW Hell, and Alexander Egner (2008)

Optic Express 16:21093–21103 doi: 10.1364/OE.16.021093

In this paper we developed a polarization sensitive detection nanoscope based on single molecule super resolution imaging.


Photoactivation of pa–GFP in 3D: optical tools for spatial confinement

Ilaria Testa, Massimiliano Garrè, Dario Parazzoli, Sara Barozzi, Ivan Ponzanelli, Davide Mazza, Mario Faretta, Alberto Diaspro (2008)

European Biophysical Journal, 37: 1219–1227 doi: 10.1007/s00249–008–0317–9


Spatial control of pa–GFP photoactivation in living cells

Ilaria Testa, Dario Parazzoli, Sara Barozzi, Massimiliano Garrè, Mario Faretta, Alberto Diaspro (2008)

Applied Physics Letters 91:13 doi: 10.1063/1.2790847


Blue light (488nm) irradiation induces photo-activation of the photo–activatable green fluorescent protein

Ilaria Testa, Davide Mazza, Sara Barozzi, Mario Faretta, Alberto Diaspro (2007)

Biophysical Journal 96: 4063-4074 doi: 10.1016/j.bpj.2009.02.0556

About SciLifeLab

Our lab is located in the Science for Life Laboratory (SciLifeLab), a national center for molecular biosciences with focus on health and environmental research. SciLifeLab has been created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University.

Open Positions

We are looking for self-motivated and curiosity-driven candidates with an expertise in physics, chemistry or biology, who are looking to make original contributions to the field of super-resolution microscopy. The candidates will work on collaborative projects investigating the nanoscale organization and dynamics of proteins in living neurons and brain tissue with our cutting edge microscopy technology. We offer an outstanding scientific environment and a vibrant working climate with individual freedom and various possibilities for professional development. The work will be funded by the European Union within the ERC project “MoNaLISA”.

Get in Touch

    Ilaria Testa, PhD.
    Assistant Professor
    KTH Royal Institute of Technology
    Dept. of Applied Physics
  • Email:
    ilaria.testa@scilifelab.se
  • Address:
    Science for Life Laboratory
    Tomtebodavägen 23A
    171 65 Stockholm
    Sweden